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Abstract Reusability of process models is frequently discussed in the 

literature. Practices of reusability are expected to increase the performance 

of the designers, because they do not need to start everything from scratch, 

and the usage of best practices is reinforced. However, the detection of 

reusable parts and best practices in collections of BPMN 2.0 process 

models is currently only defined through the experience of experts in 

this field. In this work we extend an algorithm that detects the recurring 

structures in a collection of process models. The extended algorithm 

counts the number of times that a recurring structure appears in a 

collection of process models, and assigns the corresponding number to 

its semantics. Moreover, the dublicate entries are eliminated from the 

collection that contains the extracted recurring structures. In this way, 

we assert that the resulting collection contains only unique entries. We 

validate our methodology by applying it on a collection of BPMN 2.0 

process models and analyze the results. As shown in the analysis the 

methodology does not only detect applied practices, but also leads to 

conclusions of our collection’s special characteristics. 

 

 

Keywords: BPMN 2.0, Relevant Process Fragments, RPF, process models, 

reusabulity, structural, similarity 

 
 

1 Introduction 

 
During the last years many researchers [6, 7, 12, 15, 16] have emphasized the 

importance of the reusability of process models. It is expected that an efficient 

methodology to reuse process models will contribute to a more effective engineer- 

ing of process models [15]. For this reason we need to analyze the process models 
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and decide which parts can be reused. The research field of process models simi- 

larities focuses on three different areas: 1) text semantics, 2) structural analysis 

and 3) behavioral analysis [5]. 

Large collections of process models are anonymized or modeled for docu- 

mentation. Thus, they are not executable. Consequently, the approaches of text 

semantics (vs. anonymized models) and behavioral analysis on executable models 

(vs. mock-up, non-executable models) cannot be used efficiently. In these cases 

we need to apply the approach of structural similarities. However, structural 

similarities also base their functionality on text semantics and behavioral sim- 

ilarities [4, 5, 14]. For this reason we have suggested a methodology that runs 

(sub)graph isomorphism against a collection of process models and focuses on 

extracting the common recurring structures. The first approach of our methodol- 

ogy leads to promising results, as experiments showed that the algorithm can 

run with logarithmic complexity [17]. 

This work extends the work described in [17] with the following contributions: 

 
1. extending the algorithm to count the recurring structures and filter the 

duplicate results 

2. applying the algorithm on different use case scenarios 

3. analyzing the exported results 

 
This paper is structured as follows: section 2 describes the overall methodology 

overview of our work. Section 3 defines the problem and explains the basic 

concepts that frame it. Section 4 shows the implementation of the designed 

methodology. Section 5 discusses the results of the methodology’s application. 

Section 6 addresses the related work in this area, and Section 7 concludes and 

describes our plans for future work. 

 

2 Methodology Overview 
 

The BenchFlow Project1 aims to create the first benchmark for Business Process 

Model and Notation (BPMN 2.0) compliant Workflow Engines. In the scope 

of that project we have collected process models that reflect the diversity of 

application scenarios. For the construction of a representative benchmark it 

is needed to extract the essence of each of the scenarios and construct a set 

of representative process models. The extracted representative process models 
 

 

1       http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php 

http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php
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are called “synthetic” process models, because even though they are artificial 

they constitute an accurate representation of real world use cases. Synthetic 

process models should also be combined with appropriate Web Services, synthetic 

data and interacting users. To address these challenges, we develop a workload 

generator. In this work we focus on the methodology to synthesize representative 

process models while the generation of appropriate web services and interacting 

users is left for future work. 

Figure 1 depicts the methodology for the generation of the synthetic processes, 

which uses the following four phases: 

 
 

 

Figure 1: Methodology Overview 

 

 

 

1. Process Fragments Discovery: Addresses the automatic discovery of 

recurring structures in a collection of process models. Our methodology is 

applied in a collection of BPMN 2.0 process models. The definition and 

implementation of this methodology are described in [17]. 
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2. Process Fragments Refinement: The extracted recurring structures are 

stored as unstructured BPMN 2.0 code. They need to be refined as “Process 

Fragments” [15] in order to be stored in a process fragment library, out of 

which they can be managed, and retrieved. 

3. Process Fragments Selection: All process fragments are not necessarily 

of equal interest for the benchmark. For example, in a benchmark scenario we 

are interested in high parallel fragments, while in another scenario we need 

to check how the Workflow Engine responds to complex control flow branch- 

ing structures. This component selects fragments that satisfy benchmark 

related criteria. The criteria are defined by the user or from the benchmark 

customization. The work described in this paper focuses on this component, 

because it calculates the appearance rate of each recurring structure in the 

collection. Furthermore, it annotates the recurring structure with its appear- 

ance number. This is one of the metrics that will be used for the selection 

of the process fragments. Other metrics that we defined are size, structural 

metrics, metrics of external interaction, data handling and complexity [2, 13]. 

The process fragments that we select from this component are stored in a 

separate repository. 

It is possible that phases 1-3 (Figure 1) can sometimes be omitted if the 

extraction criteria are compliant with the purposes of the benchmarking 

process. 

4. Process Fragments Synthesis: Synthesizes the process fragments into 

executable processes according to the composition criteria given by the user 

or the benchmark customization. For example, when the selection criteria 

ask for a process with control-flow nesting ≤ N and M external interactions, 

the appropriate fragments are chosen to synthesize it. 
 

3 Background 
 

3.1 Problem Definition 

In graph theory the task of discovering similar structures is expressed as sub-graph 

discovery problem. Recurring sub-graph discovery is a sub-category of the general 

problem of subgraph isomorphism which is proven to be NP-Complete [1, 9]. 

However there are special cases of graphs and matching problems that are proven 

to be of lower complexity [20]. 

Figure 2 presents two process models expressed in BPMN 2.0. As seen, these 

models consist of nodes (in BPMN 2.0 tasks, events and gateways), directed edges 
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(in BPMN 2.0 sequence flows), and labeling (BPMN 2.0 language semantics on 

events and gateways, and names on tasks). Hence, process models are a special 

type of directed attributed graphs. These are graphs where their vertexes or 

edges contain information. 

 
 

 
 

Figure 2: Recurring Structures in two BPMN 2.0 Process Models 

 

 

Some results of the recurring structures extraction is shown in Figure 2. It 

shows four pairs of recurring structures in two BPMN 2.0 process models. These 

structures are not the complete set of reoccurring structures in these two process 

models. However we considered these as representative cases as they demonstrate 

the following attributes: 

 
1. Structures can be nested within each other. This means that a recurring 

structure may be a subgraph of another, bigger recurring structure. Example 

structures of this attribute are marked with the red solid and the blue 

dash-dotted line. 

2. Reoccurring structures can appear in different positions of the process model. 

As position we define the number of edges from the node to the model’s start 

event This attribute applies to all represented structures. 

3. Structures can be “partially” similar. This means that some of the outgoing 

edges of a node can lead to similar structures. Structures marked with the 

orange dash line and the green dotted line are some examples of this attribute. 
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It is also possible that a structure demonstrates more than one of the above 

attributes. For example the structure marked with the blue dash-dotted line is 

nested (Attribute 2) and appears in different positions of the diagram (Attribute 

3). 

We have used these attributes as a basis to develop the methodology to 

detect and extract recurring structures [17]. The goal of this work is to: a) detect 

the duplicate structures and b) to tag them with the appropriate number of 

appearances. This task is also reduced to a subgraph isomorphism challenge, 

since we have to reapply the methodology of graph isomorphism in order to 

decide if a structure is duplicate in the collection. 

 

 
3.2 Basic Concepts 

 
 

This section sets the theoretical work used by our methodology of fragmentation, 

duplicate filtering, and appearance counting. We extend the definition of “Process 

Fragment”, initially given by [15] to fit our needs. 

Before we proceed to the extension of the “Process Fragment” definition, we 

need to define the concept of a “Checkpoint”. As “Checkpoint” we define any type 

of node that can be used as a starting point for our extended process fragments. 

The types of checkpoints can be configured by the user, and vary with respect to 

the process language that describes the models. 

The extended definition of “Process Fragment” is called a “Relevant Process 

Fragment” (RPF) because its detection is dependent to its existence in at least 

K process models. RPF satisfy the following structural requirements: 

 
– starts with a checkpoint 

– has at least N nodes including the checkpoint, where N is a natural number 
and pre-configured from the user. We use N ≥3. 

– contains at least one activity 

 
For this paper we focus on the detection of RPFs when K = 2, while in future 

work the threshold of K may vary. 

Finally, we define as duplicate any structure that appears in K + 1 process 

models. Since in this work the threshold is set as K = 2, a duplicate must appear 

in at least 3 models before it is filtered. 
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4 Implementation 
 

4.1 Algorithm: Get Recurring Structures 
 

This section describes the methodology we developed for the discovery of the 

RPFs. For a better comprehension the algorithm is separated in two algorithms. 

Algorithm 1 starts the traversal of the model, calls Algorithm 2, and returns the 

discovered RPF. Algorithm 2 compares two models with each other and extracts 

the discovered similar structures. 

Algorithm 1 takes as input one set of sequence flows (graph’s edges) for each 

model. These sequence flows correspond to every outgoing sequence flows of each 

checkpoint. Figure 2 shows the scenario were the configured types of checkpoints 

are gateways and events. For example, see checkpoint B and checkpoint E′ (cf. 

figure 2) . The corresponding sets given as input to the algorithm will be Set1 = 

{{exclusive gateway → T ask A }, {exclusive gateway → T ask C }} for Model 

A and Set2 = {{parallel gateway → T ask E }, {parallel gateway → T ask F }} 

for Model B. These sets of checkpoint sequence flows are called checkpointFlows 

in lines 3-4 of algorithm 2. This process is done to ensure that all possible sets of 

paths will be traversed by the end of the algorithm. 

 
 

 

Algorithm 1 Procedure that calculates the matching paths of two models 
 

 

1:   procedure  getMatchingPath() 

2: i ← 0 

3: for all checkpointF lows chF lowA ∈ modelA do 
4: for all checkpointsF lows chF lowB ∈ modelB do 
5: tmpFragment ← ∅ 

6: tmpF ragment ← comparison(chF lowA, chF lowB, tmpF ragment) 
7: if  isValidFragment(tmpF ragment) then 

8: add(collection, tmpFragment) 
9: end if 

10: end for 
11: end for 
12: end procedure 

 
 

 
 

For all possible pairs of checkpointFlows in the two checkpoint sets, namely 

for their Cartesian product, we call algorithm 2 (line 6 of algorithm 1). It 

takes as parameters the current instances of checkpointFlows, and an empty 

fragment. By iteratively calling algorithm 2 for the different checkpointFlows we 

manage to check all possible checkpointFlows combinations as a possible start 
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point of an RPF. The comparison procedure returns the calculated RPF (cf. 

variable tmpFragment). At this point we need to validate if the returned structure 

comprises an RPF or not (cv. function ISVALIDFRAGMENT(tmpFragment)). 

The validation rules applied are the requirements described in Section 3.2. If the 

validation is successful, then the RPF is saved in a temporary data structure 

that holds all the discovered RPFs (cf. variable “collection” in algorithm 1)). 

 
 

 

Algorithm 2 Procedure that compares the two models 
 

 

1: procedure comparison(sequenceF lowModelA, sequenceF lowModelB, 

tmpFragment) 

2: if  (getSourceType(sequenceF lowModelA) 
equals 

getSourceType(sequenceF lowModelB)) 
and 

(getTargetType(sequenceF lowModelA) 
equals 

getTargetType(sequenceF lowModelB))  then 
3: outgoingA ← getOutgoing(sequenceFlowModelA) 
4: outgoingB ← getOutgoing(sequenceFlowModelB) 
5: add(fragment, sequenceF lowModelB) 
6: for all outgoingA ∈ ModelA do 

7: for all outgoingB ∈ ModelB do 

8: if outgoingB ∈/ tmpF ragment then 

9: comparison(outgoingA, outgoingB, tmpFragment) 
10: end if 
11: end for 
12: end for 
13: else 
14: return fragment 

15: end if 
16: end procedure 

 
 

 
 

The functionality of algorithm 2 is to traverse and compare the models. 

The first step in this procedure is to check if the sequence flows that are given 

as parameters have sources and targets that are of the same type (e.g. task, 

exclusive gateway, start event etc.)(cf. functions GETSOURCETYPE() and 

GETTARGETTYPE()). When this condition is satisfied we say that two sequence 

flows match. Since we are strictly focusing on the structural similarity of the 

models this decision can be taken only based on the type of the sequence flow’s 

source and target node. However, the condition could be extended if we wanted 
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to check the similarity regarding more parameters e.g. labels of the nodes. When 

the sequence flows match we add the respective sequence flow to a temporary 

fragment structure (cf. variable tmpFragment in algorithm 2). Afterwards we 

get all the outgoing sequence flows (cf. function GETOUTGOING()) of the 

previously considered target nodes, i.e. make a step forward to the traversal, and 

call recursively the comparison algorithm for all pairs of outgoing sequence flows. 

The termination condition of the recursion is two sequence flows that do not 

match, or if the checked nodes do not have any outgoing sequence flows. If this 

condition is satisfied the algorithm returns the set of matched sequence flows 

until this point of execution (cf. variable tmpFragment in algorithm 2). 

 
 
 

4.2 Algorithm: Find Duplicates and Count Appearance 
 

 
This section presents the extensions that we developed for the algorithms of 

subsection 4.1. Their goal is to filter the duplicate RPFs, and count the times of 

their appearance. Algorithm 3 will check a set of newly discovered RPFs against 

the collection of stored RPFs, to find the number of appearances of an RPF in 

the collection. To this end, it calls algorithm 4 for their Cartesian product to 

check if they are isomorphic. Algorithm 4 checks if two RPFs are isomorphic to 

each other. 

 
 

 

Algorithm 3 Procedure that checks if a fragments is duplicate and increases 
appearance counter 

 
 

procedure handleDuplicates(matches) 

for all match ∈ matches do 

if collection equals ∅ then 
4: add(collection,match) 

else if  contains(collection, match) then 
tmpFragment ← collection[match] 

appearanceCounter ← tmpFragment.appearanceCounter 

8: tmpFragment.appearanceCounter ← appearanceCounter + 1 

tmpFragment.isomorphic ← true 
else 

add(collection,match) 
12:  end if 

end for 
end procedure 
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More particularly, algorithm 3 takes as parameter a set of matched RPFs. This 

is basically the output of algorithm 1 described in subsection 4.1. As discussed 

the set of newly matched RPFs (cf. matches) is compared against the RPFs that 

are already stored in the collection. Firstly, we need to check if the collection 

is empty (cf. variable collection). In this case we add the first matched RPF 

the collection and we do not need apply further checks. For every other newly 

matched RPF (cf. variable match) we check if it is contained in the collection. The 

function CONTAINS (cf. line 5 in algorithm 3) will internally call algorithm 4 

to compare each matched RPF match with each RPF stored in the collection. 

If we find an isomorphic match we need to edit its corresponding isomorphic 

RPF that is stored in the collection. We mark it as isomorphic, and we increase 

its appearance counter by 1. If we do not find any isomorphic match then the 

RPF is added in the collection (cf. function ADD at line 11 of algorithm 3). If 

we apply this procedure before storing each RPF, the final collection will not 

contain any duplicates. 

 
 

 

Algorithm 4 Procedure that calculates if two RPFs are equal 
 

 

1:    procedure  isFragmentIsomorphic(fragment1, fragment2) 
2:     fragment1SequenceF lows ← sequenceF lows ∈ fragment1 
3:       fragment2SequenceF lows ← sequenceF lows ∈ fragment2 

4:      if fragment1SequenceF lows.size() equals 
fragment2SequenceF lows.size()  then 

5: tmpFragment ← ∅ 
6: comparison(fragment1SequenceF lows[0], 

fragment2SequenceF lows[0],    tmpF ragment) 

7: if tmpFragment.size equals fragment2SequenceF lows.size then 
8: return true 

9: end if 
10:        end if 
11:        return false 

12: end procedure 
 

 

 

 

Algorithm 4 is called internally from the CONTAINS function of algorithm 3. 

Its parameters are the RPFs to compare. It will return true if and only if the 

two RPFs are completely isomorphic. So the cases of isomorphic subsets are not 

considered in this case. We first check if the two RPFs have the same number 

of sequence flows. In this case we call the algorithm 2 which operates as it was 

described in subsection 4.1. Then we need to check if the output of algorithm 2 
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has the same size of sequence flows. If two RPFs are isomorphic and have the 

same number of sequence flows then it is sure that the RPFs are equal. If the 

two RPFs did not have the same number of sequence flows we know for sure they 

were not completely isomorphic. In this case false is returned. 

 

5 Validation and Discussion 

This section shows and analyzes the results of the methodology’s application. 

For the validation we used 43 BPMN 2.0 process models that originate from 

the sets of BPMN 2.0 process models2 also used in [14], and the BPMN 2.0 

standard examples3 [11]. This is a combination of artificial and real-world process 

models. The RPFs discovery algorithm (cf. algorithm 1) is configured to calculate 

the types of Set1 = {events, gateways} as checkpoints, and we set N = 3 the 

number of nodes of each RPF. 

Each model is compared with all the other models except for themselves. This 

leads to 903 comparisons. That results in 1544 non-filtered RPFs. The results 

are decreased to 259 RPFs after the filtering of duplicates. This leads to 83.22% 

decrease of the results. This is an important percentage of decrease because it 

will help us reduce the exported results and ease the analysis of the produced 

RPF collection. 

The calculated times of appearance of the detected RPFs range from [1, 178]. 

From the RPFs that appear more than one times in the collection (54 RPFs) we 

calculate the median value and set it as threshold. Statistically the median value 

shows a central tendency of a set. Hence, it was considered representative as a 

threshold. In this case: 

Median = T hreshold = 14 
 

We result in 27 RPFs with re-appearance rate above the threshold. Setting the 

threshold does not only eliminate significantly the results, but also gives us an 

insight of the most frequently used RPFs in the collection. Due to space limitations 

in figure 3 we present only the first 8 RPFs with the biggest appearance rate. 

Each RPF shown in the figure 3 has an ID number at its left side, and at its 

right side a number that indicates the times of appearance in the collection. 

As seen figure 3 most of the RPFs (1,2,3,4,5,7) comprise of simple structures. 

These structures are expected to be found in a collection of process models as 
 

 

2    http://pi.informatik.uni-siegen.de/qudimo/bpmn/ 
3    http://www.omg.org/spec/BPMN/20100602/ 

http://pi.informatik.uni-siegen.de/qudimo/bpmn/
http://www.omg.org/spec/BPMN/20100602/


12 Marigianna Skouradaki and Frank Leymann 
 

 

 

Figure 3: The first 8 RPFs with the bigger appearance rate 

 

 
they are simple combinations of parallel and/or exclusive gateways with tasks. 

Hence, unless someone is interested to learn the appearance ratio of these trivial 

structures the number of nodes per RPF can be set to a number> 3. Then these 

RPFs will not be included in the results. 

By studying the resulting RPFs it is also possible to draw conclusions about 

usual practices in the design of process models. For example, RPF 6 reveals that 

parallel structures are frequently used at the end of process models. It is also 

interesting to notice that only one branch of the branching structures is found to 

be repeated each time. This indicates that the rest of the branches followed a 

different business logic. 

General conclusions about our collection can also be drawn. For example, 

we  observe  that  RPF  7  and  RPF  9  are  quite  big  and  complex  to  have  so 
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frequent appearances. From this we can conclude many of the analyzed models 

were different versions of the same business process. As the real analysis will 

be applied on thousands of real-world process models gathered from different 

resources, this phenomenon is expected to be eliminated. However, we might have 

similar phenomena where the RPFs will reveal other details about our collection. 

 
6 Related Work 

 
Process Fragmentation is frequently discussed in the literature, with a focus to 

Single-Entry-Single-Exit (SESE) regions [18,19]. These regions are then connected 

together, to form an hierarchy called “Refined Process Structure Tree” (RPST), 

which is then used to detect these sub-graphs of models that match together [8]. 

This approach was also examined in our work [17]. However, the division of the 

model to SESE regions, and then RPSTs would result in a sub-set of fragments, 

that do not necessarily represent the existing recurring structures in the process 

models. Therefore, the proposed technique was not considered compliant with 

our needs. In the field of structural similarities we could not find any approach 

that focuses on the detection of recurring structural parts in BPMN 2.0 models 

with a sole focus on their control-flow. A number of algorithms for process model 

structural matching and comparison are presented in [4, 14], but all of them have 

a strong focus on text semantics to detect similar mappings. As our work focuses 

on the structure of the process model and is independent of text or behavioral 

information, it was not possible to further use the aforementioned approaches. 

In [10] there is a focus on BPEL processes, which are tranformed to a BPEL 

process tree. Afterwards, tree mining algorithms are applied in order to discover 

recurring structures in a process. Although the further goal of this work is very 

similar to our goal, the different nature of BPMN 2.0 language does not allow to 

apply the same tree mining techniques for similar structures detection. 

The Workflow Patterns Initiative4 is an effort to provide a conceptual basis 

for process technology [3]. This initiative presents the aspects (control flow, data, 

resource, and exception handling) that need to be supported by any workflow 

language. As pattern they describe the minimum sequence of workflow language 

elements that should be combined to represent a fundamental concept. The 

proposed micro-structures are not accompanied by information of real-life usage 

rate. Therefore, we consider this approach to complement but not replace our 

goals. 
 

4       http://www.workflowpatterns.com/ 

http://www.workflowpatterns.com/
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7 Conclusion and Future Work 

 
In this work we described an extension of an algorithm defined in [17]. With 

this extension the algorithm automatically counts the appearances of recurring 

structures in a collection of process models. The ultimate motivation for this 

work is the development of a workload generator for benchmarking BPMN 2.0 

Workflow Engines. However, the proposed methodology can be also applied to 

different use-case scenarios for process model re-usability. 

To the best of our knowledge, this work is the first attempt to automatically 

detect frequently used structures in a collection of BPMN 2.0 process models. We 

have evaluated our approach with a collection of 43 BPMN 2.0 process models. 

As seen from the resulting RPFs conclusions can be made about a) frequently 

used structures (usual-practices) in BPMN 2.0 and b) for the collection’s special 

characteristics. 

As future work we plan to extend the algorithm for the complete set of BPMN 

2.1 model elements. We will run the approach on the complete collection of 

real-world models, and execute a thorough analysis on the results. As a next step 

we will implement the first prototype of the process synthesizing methodology. 
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