

Institute of Architecture of Application Systems

“Detecting Frequently Recurring Structures in

BPMN 2.0 Process Models”

Marigianna Skouradaki, Frank Leymann

Institute of Architecture of Application Systems,

University of Stuttgart, Germany
firstname.lastname@iaas.uni-stuttgart.de

@inproceedings{skourama_summersoc_2015,
author = {Marigianna Skouradaki and Frank Leymann},
title = {Detecting Frequently Recurring Structures in BPMN 2.0

Process Models},
booktitle = {Proceedings of the 9th Symposium and Summer School On

Service-Oriented Computing: SummerSOC'15},
editors = {Christos Nikolaou and Frank Leymann},
year = {2015},
pages = {102--116},
publisher = {IBM}

}

© by the authors
See also SummerSOC.eu site:
http://www.summersoc.eu/

:

mailto:firstname.lastname@iaas.uni-stuttgart.de
http://www.summersoc.eu/

Detecting Frequently Recurring Structures in

BPMN 2.0 Process Models

Marigianna Skouradaki1 and Frank Leymann1

Institute of Architecture of Application Systems, University of Stuttgart, Germany

{skouradaki,leymann}@iaas.uni-stuttgart.de

Abstract Reusability of process models is frequently discussed in the

literature. Practices of reusability are expected to increase the performance

of the designers, because they do not need to start everything from scratch,

and the usage of best practices is reinforced. However, the detection of

reusable parts and best practices in collections of BPMN 2.0 process

models is currently only defined through the experience of experts in

this field. In this work we extend an algorithm that detects the recurring

structures in a collection of process models. The extended algorithm

counts the number of times that a recurring structure appears in a

collection of process models, and assigns the corresponding number to

its semantics. Moreover, the dublicate entries are eliminated from the

collection that contains the extracted recurring structures. In this way,

we assert that the resulting collection contains only unique entries. We

validate our methodology by applying it on a collection of BPMN 2.0

process models and analyze the results. As shown in the analysis the

methodology does not only detect applied practices, but also leads to

conclusions of our collection’s special characteristics.

Keywords: BPMN 2.0, Relevant Process Fragments, RPF, process models,

reusabulity, structural, similarity

1 Introduction

During the last years many researchers [6, 7, 12, 15, 16] have emphasized the

importance of the reusability of process models. It is expected that an efficient

methodology to reuse process models will contribute to a more effective engineer-

ing of process models [15]. For this reason we need to analyze the process models

2 Marigianna Skouradaki and Frank Leymann

and decide which parts can be reused. The research field of process models simi-

larities focuses on three different areas: 1) text semantics, 2) structural analysis

and 3) behavioral analysis [5].

Large collections of process models are anonymized or modeled for docu-

mentation. Thus, they are not executable. Consequently, the approaches of text

semantics (vs. anonymized models) and behavioral analysis on executable models

(vs. mock-up, non-executable models) cannot be used efficiently. In these cases

we need to apply the approach of structural similarities. However, structural

similarities also base their functionality on text semantics and behavioral sim-

ilarities [4, 5, 14]. For this reason we have suggested a methodology that runs

(sub)graph isomorphism against a collection of process models and focuses on

extracting the common recurring structures. The first approach of our methodol-

ogy leads to promising results, as experiments showed that the algorithm can

run with logarithmic complexity [17].

This work extends the work described in [17] with the following contributions:

1. extending the algorithm to count the recurring structures and filter the

duplicate results

2. applying the algorithm on different use case scenarios

3. analyzing the exported results

This paper is structured as follows: section 2 describes the overall methodology

overview of our work. Section 3 defines the problem and explains the basic

concepts that frame it. Section 4 shows the implementation of the designed

methodology. Section 5 discusses the results of the methodology’s application.

Section 6 addresses the related work in this area, and Section 7 concludes and

describes our plans for future work.

2 Methodology Overview

The BenchFlow Project1 aims to create the first benchmark for Business Process

Model and Notation (BPMN 2.0) compliant Workflow Engines. In the scope

of that project we have collected process models that reflect the diversity of

application scenarios. For the construction of a representative benchmark it

is needed to extract the essence of each of the scenarios and construct a set

of representative process models. The extracted representative process models

1 http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php

http://www.iaas.uni-stuttgart.de/forschung/projects/benchflow.php

Detecting Frequently Recurring Structures in BPMN 2.0 Process Models 3

are called “synthetic” process models, because even though they are artificial

they constitute an accurate representation of real world use cases. Synthetic

process models should also be combined with appropriate Web Services, synthetic

data and interacting users. To address these challenges, we develop a workload

generator. In this work we focus on the methodology to synthesize representative

process models while the generation of appropriate web services and interacting

users is left for future work.

Figure 1 depicts the methodology for the generation of the synthetic processes,

which uses the following four phases:

Figure 1: Methodology Overview

1. Process Fragments Discovery: Addresses the automatic discovery of

recurring structures in a collection of process models. Our methodology is

applied in a collection of BPMN 2.0 process models. The definition and

implementation of this methodology are described in [17].

4 Marigianna Skouradaki and Frank Leymann

2. Process Fragments Refinement: The extracted recurring structures are

stored as unstructured BPMN 2.0 code. They need to be refined as “Process

Fragments” [15] in order to be stored in a process fragment library, out of

which they can be managed, and retrieved.

3. Process Fragments Selection: All process fragments are not necessarily

of equal interest for the benchmark. For example, in a benchmark scenario we

are interested in high parallel fragments, while in another scenario we need

to check how the Workflow Engine responds to complex control flow branch-

ing structures. This component selects fragments that satisfy benchmark

related criteria. The criteria are defined by the user or from the benchmark

customization. The work described in this paper focuses on this component,

because it calculates the appearance rate of each recurring structure in the

collection. Furthermore, it annotates the recurring structure with its appear-

ance number. This is one of the metrics that will be used for the selection

of the process fragments. Other metrics that we defined are size, structural

metrics, metrics of external interaction, data handling and complexity [2, 13].

The process fragments that we select from this component are stored in a

separate repository.

It is possible that phases 1-3 (Figure 1) can sometimes be omitted if the

extraction criteria are compliant with the purposes of the benchmarking

process.

4. Process Fragments Synthesis: Synthesizes the process fragments into

executable processes according to the composition criteria given by the user

or the benchmark customization. For example, when the selection criteria

ask for a process with control-flow nesting ≤ N and M external interactions,

the appropriate fragments are chosen to synthesize it.

3 Background

3.1 Problem Definition

In graph theory the task of discovering similar structures is expressed as sub-graph

discovery problem. Recurring sub-graph discovery is a sub-category of the general

problem of subgraph isomorphism which is proven to be NP-Complete [1, 9].

However there are special cases of graphs and matching problems that are proven

to be of lower complexity [20].

Figure 2 presents two process models expressed in BPMN 2.0. As seen, these

models consist of nodes (in BPMN 2.0 tasks, events and gateways), directed edges

Detecting Frequently Recurring Structures in BPMN 2.0 Process Models 5

(in BPMN 2.0 sequence flows), and labeling (BPMN 2.0 language semantics on

events and gateways, and names on tasks). Hence, process models are a special

type of directed attributed graphs. These are graphs where their vertexes or

edges contain information.

Figure 2: Recurring Structures in two BPMN 2.0 Process Models

Some results of the recurring structures extraction is shown in Figure 2. It

shows four pairs of recurring structures in two BPMN 2.0 process models. These

structures are not the complete set of reoccurring structures in these two process

models. However we considered these as representative cases as they demonstrate

the following attributes:

1. Structures can be nested within each other. This means that a recurring

structure may be a subgraph of another, bigger recurring structure. Example

structures of this attribute are marked with the red solid and the blue

dash-dotted line.

2. Reoccurring structures can appear in different positions of the process model.

As position we define the number of edges from the node to the model’s start

event This attribute applies to all represented structures.

3. Structures can be “partially” similar. This means that some of the outgoing

edges of a node can lead to similar structures. Structures marked with the

orange dash line and the green dotted line are some examples of this attribute.

6 Marigianna Skouradaki and Frank Leymann

It is also possible that a structure demonstrates more than one of the above

attributes. For example the structure marked with the blue dash-dotted line is

nested (Attribute 2) and appears in different positions of the diagram (Attribute

3).

We have used these attributes as a basis to develop the methodology to

detect and extract recurring structures [17]. The goal of this work is to: a) detect

the duplicate structures and b) to tag them with the appropriate number of

appearances. This task is also reduced to a subgraph isomorphism challenge,

since we have to reapply the methodology of graph isomorphism in order to

decide if a structure is duplicate in the collection.

3.2 Basic Concepts

This section sets the theoretical work used by our methodology of fragmentation,

duplicate filtering, and appearance counting. We extend the definition of “Process

Fragment”, initially given by [15] to fit our needs.

Before we proceed to the extension of the “Process Fragment” definition, we

need to define the concept of a “Checkpoint”. As “Checkpoint” we define any type

of node that can be used as a starting point for our extended process fragments.

The types of checkpoints can be configured by the user, and vary with respect to

the process language that describes the models.

The extended definition of “Process Fragment” is called a “Relevant Process

Fragment” (RPF) because its detection is dependent to its existence in at least

K process models. RPF satisfy the following structural requirements:

– starts with a checkpoint

– has at least N nodes including the checkpoint, where N is a natural number
and pre-configured from the user. We use N ≥3.

– contains at least one activity

For this paper we focus on the detection of RPFs when K = 2, while in future

work the threshold of K may vary.

Finally, we define as duplicate any structure that appears in K + 1 process

models. Since in this work the threshold is set as K = 2, a duplicate must appear

in at least 3 models before it is filtered.

Detecting Frequently Recurring Structures in BPMN 2.0 Process Models 7

4 Implementation

4.1 Algorithm: Get Recurring Structures

This section describes the methodology we developed for the discovery of the

RPFs. For a better comprehension the algorithm is separated in two algorithms.

Algorithm 1 starts the traversal of the model, calls Algorithm 2, and returns the

discovered RPF. Algorithm 2 compares two models with each other and extracts

the discovered similar structures.

Algorithm 1 takes as input one set of sequence flows (graph’s edges) for each

model. These sequence flows correspond to every outgoing sequence flows of each

checkpoint. Figure 2 shows the scenario were the configured types of checkpoints

are gateways and events. For example, see checkpoint B and checkpoint E′ (cf.

figure 2) . The corresponding sets given as input to the algorithm will be Set1 =

{{exclusive gateway → T ask A }, {exclusive gateway → T ask C }} for Model

A and Set2 = {{parallel gateway → T ask E }, {parallel gateway → T ask F }}

for Model B. These sets of checkpoint sequence flows are called checkpointFlows

in lines 3-4 of algorithm 2. This process is done to ensure that all possible sets of

paths will be traversed by the end of the algorithm.

Algorithm 1 Procedure that calculates the matching paths of two models

1: procedure getMatchingPath()

2: i ← 0

3: for all checkpointF lows chF lowA ∈ modelA do
4: for all checkpointsF lows chF lowB ∈ modelB do
5: tmpFragment ← ∅

6: tmpF ragment ← comparison(chF lowA, chF lowB, tmpF ragment)
7: if isValidFragment(tmpF ragment) then

8: add(collection, tmpFragment)
9: end if

10: end for
11: end for
12: end procedure

For all possible pairs of checkpointFlows in the two checkpoint sets, namely

for their Cartesian product, we call algorithm 2 (line 6 of algorithm 1). It

takes as parameters the current instances of checkpointFlows, and an empty

fragment. By iteratively calling algorithm 2 for the different checkpointFlows we

manage to check all possible checkpointFlows combinations as a possible start

8 Marigianna Skouradaki and Frank Leymann

point of an RPF. The comparison procedure returns the calculated RPF (cf.

variable tmpFragment). At this point we need to validate if the returned structure

comprises an RPF or not (cv. function ISVALIDFRAGMENT(tmpFragment)).

The validation rules applied are the requirements described in Section 3.2. If the

validation is successful, then the RPF is saved in a temporary data structure

that holds all the discovered RPFs (cf. variable “collection” in algorithm 1)).

Algorithm 2 Procedure that compares the two models

1: procedure comparison(sequenceF lowModelA, sequenceF lowModelB,

tmpFragment)

2: if (getSourceType(sequenceF lowModelA)
equals

getSourceType(sequenceF lowModelB))
and

(getTargetType(sequenceF lowModelA)
equals

getTargetType(sequenceF lowModelB)) then
3: outgoingA ← getOutgoing(sequenceFlowModelA)
4: outgoingB ← getOutgoing(sequenceFlowModelB)
5: add(fragment, sequenceF lowModelB)
6: for all outgoingA ∈ ModelA do

7: for all outgoingB ∈ ModelB do

8: if outgoingB ∈/ tmpF ragment then

9: comparison(outgoingA, outgoingB, tmpFragment)
10: end if
11: end for
12: end for
13: else
14: return fragment

15: end if
16: end procedure

The functionality of algorithm 2 is to traverse and compare the models.

The first step in this procedure is to check if the sequence flows that are given

as parameters have sources and targets that are of the same type (e.g. task,

exclusive gateway, start event etc.)(cf. functions GETSOURCETYPE() and

GETTARGETTYPE()). When this condition is satisfied we say that two sequence

flows match. Since we are strictly focusing on the structural similarity of the

models this decision can be taken only based on the type of the sequence flow’s

source and target node. However, the condition could be extended if we wanted

Detecting Frequently Recurring Structures in BPMN 2.0 Process Models 9

to check the similarity regarding more parameters e.g. labels of the nodes. When

the sequence flows match we add the respective sequence flow to a temporary

fragment structure (cf. variable tmpFragment in algorithm 2). Afterwards we

get all the outgoing sequence flows (cf. function GETOUTGOING()) of the

previously considered target nodes, i.e. make a step forward to the traversal, and

call recursively the comparison algorithm for all pairs of outgoing sequence flows.

The termination condition of the recursion is two sequence flows that do not

match, or if the checked nodes do not have any outgoing sequence flows. If this

condition is satisfied the algorithm returns the set of matched sequence flows

until this point of execution (cf. variable tmpFragment in algorithm 2).

4.2 Algorithm: Find Duplicates and Count Appearance

This section presents the extensions that we developed for the algorithms of

subsection 4.1. Their goal is to filter the duplicate RPFs, and count the times of

their appearance. Algorithm 3 will check a set of newly discovered RPFs against

the collection of stored RPFs, to find the number of appearances of an RPF in

the collection. To this end, it calls algorithm 4 for their Cartesian product to

check if they are isomorphic. Algorithm 4 checks if two RPFs are isomorphic to

each other.

Algorithm 3 Procedure that checks if a fragments is duplicate and increases
appearance counter

procedure handleDuplicates(matches)

for all match ∈ matches do

if collection equals ∅ then
4: add(collection,match)

else if contains(collection, match) then
tmpFragment ← collection[match]

appearanceCounter ← tmpFragment.appearanceCounter

8: tmpFragment.appearanceCounter ← appearanceCounter + 1

tmpFragment.isomorphic ← true
else

add(collection,match)
12: end if

end for
end procedure

10 Marigianna Skouradaki and Frank Leymann

More particularly, algorithm 3 takes as parameter a set of matched RPFs. This

is basically the output of algorithm 1 described in subsection 4.1. As discussed

the set of newly matched RPFs (cf. matches) is compared against the RPFs that

are already stored in the collection. Firstly, we need to check if the collection

is empty (cf. variable collection). In this case we add the first matched RPF

the collection and we do not need apply further checks. For every other newly

matched RPF (cf. variable match) we check if it is contained in the collection. The

function CONTAINS (cf. line 5 in algorithm 3) will internally call algorithm 4

to compare each matched RPF match with each RPF stored in the collection.

If we find an isomorphic match we need to edit its corresponding isomorphic

RPF that is stored in the collection. We mark it as isomorphic, and we increase

its appearance counter by 1. If we do not find any isomorphic match then the

RPF is added in the collection (cf. function ADD at line 11 of algorithm 3). If

we apply this procedure before storing each RPF, the final collection will not

contain any duplicates.

Algorithm 4 Procedure that calculates if two RPFs are equal

1: procedure isFragmentIsomorphic(fragment1, fragment2)
2: fragment1SequenceF lows ← sequenceF lows ∈ fragment1
3: fragment2SequenceF lows ← sequenceF lows ∈ fragment2

4: if fragment1SequenceF lows.size() equals
fragment2SequenceF lows.size() then

5: tmpFragment ← ∅
6: comparison(fragment1SequenceF lows[0],

fragment2SequenceF lows[0], tmpF ragment)

7: if tmpFragment.size equals fragment2SequenceF lows.size then
8: return true

9: end if
10: end if
11: return false

12: end procedure

Algorithm 4 is called internally from the CONTAINS function of algorithm 3.

Its parameters are the RPFs to compare. It will return true if and only if the

two RPFs are completely isomorphic. So the cases of isomorphic subsets are not

considered in this case. We first check if the two RPFs have the same number

of sequence flows. In this case we call the algorithm 2 which operates as it was

described in subsection 4.1. Then we need to check if the output of algorithm 2

Detecting Frequently Recurring Structures in BPMN 2.0 Process Models 11

has the same size of sequence flows. If two RPFs are isomorphic and have the

same number of sequence flows then it is sure that the RPFs are equal. If the

two RPFs did not have the same number of sequence flows we know for sure they

were not completely isomorphic. In this case false is returned.

5 Validation and Discussion

This section shows and analyzes the results of the methodology’s application.

For the validation we used 43 BPMN 2.0 process models that originate from

the sets of BPMN 2.0 process models2 also used in [14], and the BPMN 2.0

standard examples3 [11]. This is a combination of artificial and real-world process

models. The RPFs discovery algorithm (cf. algorithm 1) is configured to calculate

the types of Set1 = {events, gateways} as checkpoints, and we set N = 3 the

number of nodes of each RPF.

Each model is compared with all the other models except for themselves. This

leads to 903 comparisons. That results in 1544 non-filtered RPFs. The results

are decreased to 259 RPFs after the filtering of duplicates. This leads to 83.22%

decrease of the results. This is an important percentage of decrease because it

will help us reduce the exported results and ease the analysis of the produced

RPF collection.

The calculated times of appearance of the detected RPFs range from [1, 178].

From the RPFs that appear more than one times in the collection (54 RPFs) we

calculate the median value and set it as threshold. Statistically the median value

shows a central tendency of a set. Hence, it was considered representative as a

threshold. In this case:

Median = T hreshold = 14

We result in 27 RPFs with re-appearance rate above the threshold. Setting the

threshold does not only eliminate significantly the results, but also gives us an

insight of the most frequently used RPFs in the collection. Due to space limitations

in figure 3 we present only the first 8 RPFs with the biggest appearance rate.

Each RPF shown in the figure 3 has an ID number at its left side, and at its

right side a number that indicates the times of appearance in the collection.

As seen figure 3 most of the RPFs (1,2,3,4,5,7) comprise of simple structures.

These structures are expected to be found in a collection of process models as

2 http://pi.informatik.uni-siegen.de/qudimo/bpmn/
3 http://www.omg.org/spec/BPMN/20100602/

http://pi.informatik.uni-siegen.de/qudimo/bpmn/
http://www.omg.org/spec/BPMN/20100602/

12 Marigianna Skouradaki and Frank Leymann

Figure 3: The first 8 RPFs with the bigger appearance rate

they are simple combinations of parallel and/or exclusive gateways with tasks.

Hence, unless someone is interested to learn the appearance ratio of these trivial

structures the number of nodes per RPF can be set to a number> 3. Then these

RPFs will not be included in the results.

By studying the resulting RPFs it is also possible to draw conclusions about

usual practices in the design of process models. For example, RPF 6 reveals that

parallel structures are frequently used at the end of process models. It is also

interesting to notice that only one branch of the branching structures is found to

be repeated each time. This indicates that the rest of the branches followed a

different business logic.

General conclusions about our collection can also be drawn. For example,

we observe that RPF 7 and RPF 9 are quite big and complex to have so

Detecting Frequently Recurring Structures in BPMN 2.0 Process Models 13

frequent appearances. From this we can conclude many of the analyzed models

were different versions of the same business process. As the real analysis will

be applied on thousands of real-world process models gathered from different

resources, this phenomenon is expected to be eliminated. However, we might have

similar phenomena where the RPFs will reveal other details about our collection.

6 Related Work

Process Fragmentation is frequently discussed in the literature, with a focus to

Single-Entry-Single-Exit (SESE) regions [18,19]. These regions are then connected

together, to form an hierarchy called “Refined Process Structure Tree” (RPST),

which is then used to detect these sub-graphs of models that match together [8].

This approach was also examined in our work [17]. However, the division of the

model to SESE regions, and then RPSTs would result in a sub-set of fragments,

that do not necessarily represent the existing recurring structures in the process

models. Therefore, the proposed technique was not considered compliant with

our needs. In the field of structural similarities we could not find any approach

that focuses on the detection of recurring structural parts in BPMN 2.0 models

with a sole focus on their control-flow. A number of algorithms for process model

structural matching and comparison are presented in [4, 14], but all of them have

a strong focus on text semantics to detect similar mappings. As our work focuses

on the structure of the process model and is independent of text or behavioral

information, it was not possible to further use the aforementioned approaches.

In [10] there is a focus on BPEL processes, which are tranformed to a BPEL

process tree. Afterwards, tree mining algorithms are applied in order to discover

recurring structures in a process. Although the further goal of this work is very

similar to our goal, the different nature of BPMN 2.0 language does not allow to

apply the same tree mining techniques for similar structures detection.

The Workflow Patterns Initiative4 is an effort to provide a conceptual basis

for process technology [3]. This initiative presents the aspects (control flow, data,

resource, and exception handling) that need to be supported by any workflow

language. As pattern they describe the minimum sequence of workflow language

elements that should be combined to represent a fundamental concept. The

proposed micro-structures are not accompanied by information of real-life usage

rate. Therefore, we consider this approach to complement but not replace our

goals.

4 http://www.workflowpatterns.com/

http://www.workflowpatterns.com/

14 Marigianna Skouradaki and Frank Leymann

7 Conclusion and Future Work

In this work we described an extension of an algorithm defined in [17]. With

this extension the algorithm automatically counts the appearances of recurring

structures in a collection of process models. The ultimate motivation for this

work is the development of a workload generator for benchmarking BPMN 2.0

Workflow Engines. However, the proposed methodology can be also applied to

different use-case scenarios for process model re-usability.

To the best of our knowledge, this work is the first attempt to automatically

detect frequently used structures in a collection of BPMN 2.0 process models. We

have evaluated our approach with a collection of 43 BPMN 2.0 process models.

As seen from the resulting RPFs conclusions can be made about a) frequently

used structures (usual-practices) in BPMN 2.0 and b) for the collection’s special

characteristics.

As future work we plan to extend the algorithm for the complete set of BPMN

2.1 model elements. We will run the approach on the complete collection of

real-world models, and execute a thorough analysis on the results. As a next step

we will implement the first prototype of the process synthesizing methodology.

Acknowledgments This work is funded by the Swiss National Science Founda-

tion and the German Research Foundation with the BenchFlow - A Benchmark for

Workflow Management Systems (DACH Grant Nr. 200021E-145062/1) project.

References

1. Basin, D.A.: A term equality problem equivalent to graph isomorphism. Information

Processing Letters 51 (1994)

2. Cardoso, J.: Business process control-flow complexity: Metric, evaluation, and

validation. International Journal of Web Services Research 5(2), 49–76 (2008)

3. van Der Aalst, W.M.P., Ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:

Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (Jul 2003)

4. Dijkman, R., Dumas, M., van Dongen, B., Käärik, R., Mendling, J.: Similarity of

business process models: Metrics and evaluation. Inf. Syst. 36(2), 498–516 (Apr

2011)

5. Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for

business process model similarity search. In: Proceedings of BPM ’09. pp. 48–63.

Springer-Verlag, Berlin, Heidelberg (2009)

Detecting Frequently Recurring Structures in BPMN 2.0 Process Models 15

6. Eberle, H., Leymann, F., Schleicher, D., Schumm, D., Unger, T.: Process Fragment

Composition Operations. In: Proceedings of APSCC 2010. pp. 1–7. IEEE Xplore

(December 2010)

7. Eberle, H., Unger, T., Leymann, F.: Process fragments. In: Meersman, R., Dillon, T.,

Herrero, P. (eds.) On the Move to Meaningful Internet Systems: OTM 2009, Lecture

Notes in Computer Science, vol. 5870, pp. 398–405. Springer Berlin Heidelberg

(2009)

8. García-Bañuelos, L.: Pattern identification and classification in the translation from

bpmn to bpel. In: Meersman, R., Tari, Z. (eds.) OTM Conferences (1). Lecture

Notes in Computer Science, vol. 5331, pp. 436–444. Springer (2008)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory

of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

10. Hertis, M., Juric, M.B.: An empirical analysis of business process execution language

usage. IEEE Transactions on Software Engineering 40(8), 1–1 (2014)

11. Jordan, D., Evdemon, J.: Business process model and notation (BPMN) version

2.0. Object Management Group, Inc (January 2011)

12. Ma, Z.: Process fragments: enhancing reuse of process logic in BPEL process models.

Ph.D. thesis, Universität Stuttgart (2012)

13. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,

Error Prediction, and Guidelines for Correctness. Springer (2008)

14. Pietsch, P., Wenzel, S.: Comparison of bpmn2 diagrams. In: Mendling, J., Wei-

dlich, M. (eds.) Business Process Model and Notation, Lecture Notes in Business

Information Processing, vol. 125, pp. 83–97. Springer Berlin Heidelberg (2012)

15. Schumm, D., Leymann, F., Ma, Z., Scheibler, T., Strauch, S.: Integrating Compliance

into Business Processes: Process Fragments as Reusable Compliance Controls. In:

Schumann/Kolbe/Breitner/Frerichs (ed.) MKWI’10, Göttingen, Germany, February

23-25, 2010. pp. 2125–2137

16. Schumm, D., et al.: Process Fragment Libraries for Easier and Faster Development

of Process-based Applications. JSI 2(1), 39–55 (January 2011)

17. Skouradaki, M., Goerlach, K., Hahn, M., Leymann, F.: Application of Sub-Graph

Isomorphism to Extract Reoccurring Structures from BPMN 2.0 Process Models.

In: SOSE 2015; San Francisco Bay, USA, March 30 - 3, 2015. IEEE (April 2015)

18. Vanhatalo, J., Völzer, H., Leymann, F.: Faster and More Focused Control-Flow

Analysis for Business Process Models Through SESE Decomposition. In: Krämer,

B., Lin, K., Narasimhan, P. (eds.) Proceedings of ICSOC 2007. Lecture Notes in

Computer Science, vol. 4749, pp. 43–55. Springer-Verlag, Berlin (2007)

19. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. In: Dumas,

M., Reichert, M., Shan, M.C. (eds.) Business Process Management, Lecture Notes

in Computer Science, vol. 5240, pp. 100–115. Springer Berlin Heidelberg (2008)

20. Verma, R.M., Reyner, S.W.: An analysis of a good algorithm for the subtree

problem, correlated. SIAM J. Comput. 18(5), 906–908 (Oct 1989)

